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Part |. Introduction




Defining “Decision Context” & the Role of
Uncertainty Analysis in WQC Derivation

For the purpose of this presentation, think of a “decision context” as part of
the “so what” of scientific data and information.

— What decision is the scientific information supporting?

A numeric criterion makes several types of “Yes/No” decisions quite obvious
and necessary. Some examples:

— is a water quality criterion protective of designated uses?
— is a water quality criterion being attained?
— are trends in water quality moving toward a WQC?

In criteria science, there is (almost) always a “Maybe” because there is
(almost) always some degree of scientific uncertainty




Defining “Decision Context” & the Role of
Uncertainty Analysis in WQC Derivation, cont’d

The over-arching WQ management goal is to correctly
answer “Yes” or “No”

— Try not to say “Yes” when the correct (true) answer is
“No”, and vice versa

— In practice, this means making WQC-based decisions with
confidence, and limiting “false negative” and “false
positive” decision errors to acceptable levels




Other Voices on The Importance of
Uncertainty Characterization in WQC Science

e SETAC Workshop Publication on WQC Science (Reiley et al. 2003):

— Numerous benefits to increased use of explicit, quantitative
characterization of uncertainty in WQC

— ““The overall result will be more realistic risk assessments, the inclusion of
uncertainty into decision-making, and the appreciation of the potential
for over- and under-protection. During implementation, these uncertainty
limits could be incorporated into risk assessments for site-specific criteria
and recognized in the interpretation of monitoring data.” (p. 83)

“The statistical uncertainty associated with WQC and species sensitivity
curves should be expressed as part of each criterion.” (p. 84)




Other Voices on The Importance of Uncertainty
Characterization in WQC Science, cont’d

e Summary Minutes, September, 2005 EPA Science Advisory Board
Aquatic Life Criteria Guidelines Meeting
— “..important to continue “thinking outside of the box” in order to

review and revise water quality criteria using the existing ‘1985
Guidelines.”” (p. 4);

“... important for EPA to consider how the Agency would deal with
uncertainties in setting thresholds and making decisions.” (p. 9);

“... the Agency should consider how the revisions could decrease
uncertainty.” (p. 20)




Other Voices on The Importance of Uncertainty
Characterization in WQC Science, cont’d

 EPA 2010 Guidance “Using Stressor-response Relationships
to Derive Numeric Nutrient Criteria”

“Before finalizing candidate criteria based on stressor-response
relationships, one should systematically evaluate the scientific defensibility
of the estimated relationships and the criteria derived from those
relationships.

More specifically, one should consider whether estimated relationships
accurately represent known relationships between stressors and responses
and whether estimated relationships are precise enough to inform
decisions.” (p. 65)




Part Il. Uncertainty Limits Can Be Obtained
Using Existing 1985 Guidelines Equations

and Monte Carlo Analysis
(see McLaughlin & Jain 2011, for example)




1985 Guidelines Approach for Acute Toxicity:
Derive CMC from Toxicity Data

LC50s -SMAV — GMAV — FAV — CMC

LC50 = Chemical concentration lethal to 50% of a test
population, 8 or more families required;

SMAV = Species Mean Acute Value;

GMAYV = Genus Mean Acute Value;

FAV = Final Acute Value;

CMC = Criterion Maximum Concentration=FAV/2

L= [4.333]1 = (9.3346)(2.04875)] /4 = =3,5978
A= (9.336)(yT.05) = 3.6978 = =1,5610%

Fav = ¢=1.8105 o g, 1998




Deriving Uncertainty Limits From Replicate
Tests of a Single Test Species

Table 2. Example SMAV calculations using replicate BLM-normal-
ized EC50 results for an amphipod presented in Table 1 of USEPA
(2007)

Copper criterion _
Amphipod, Hyalella azteca
exam p I e Test Number EC50 Ln EC50

12.19 2.501

9.96 2.299
Replicate toxicity tests 15.77

allow for an estimate

of the true mean EC50 for
this species, and the
uncertainty of the estimate.

2.758
8.26 2111
8.09 2.091
15.49 2.740
18.8 2.934
Arithmetic mean 2.490"
Geometric mean (SMAV)
Standard deviation
n

Standard error (s/,/n)

“Note: SMAV =exp(2.490) or 12.07 p.g/L; EC50 units are pg/L.

from MclLaughlin and Jain (2011)



A Monte Carlo Approach:

Use Monte Carlo computer simulation to generate a new set of SMAVs (1
per species) using the mean and standard error of the acceptable LC50
results for each species

Derive GMAVSs using SMAVs of any tested genus with more than one
species;

Determine the four most sensitive genera;

Use these GMAVSs, their sensitivity rank, and the total number of genera to
calculate FAV using 1985 Guidelines equation;

Repeat (5000 trials in McLaughlin & Jain 2011);

Select desired FAV confidence limits from the resulting distribution of FAVs
(divide each FAV by 2 to get CMC distribution)




Example: BLM-Adjusted Copper Data,
Three FAV Simulations

 1- Monte Carlo simulation using the full copper data set;

e 2 - Monte Carlo simulation using a “minimum data set”
(8 taxa), with actual number of toxicity tests available for

each taxa;

3 - Monte Carlo simulation using the same 8 taxa, with
the numbers of tests set to 3 for all taxa;




Simulations 1, 2 & 3 Compared

Median

1
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Part lll. Characterizing Uncertainty in
Stressor-Response-Based Numeric Criteria




Characterizing Uncertainty in Stressor-
Response-Based Numeric Criteria

e Stressor-response
relationships and
numeric
thresholds/criteria
form a predictive
model: Response
— What type of variable

predictions?

1. response levels (a
value)
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A Receiver Operating Characteristics (ROC)
Approach: The 2x2 Matrix “Overlay”

Classification method
commonly used in medicine
and other fields, less in
environmental science to date

Useful for both categorical
data and continuous data with
numeric thresholds/criteria

Response
variable

Calculate performance across
a range of candidate stressor
criteria.

Can quantify uncertainty in
terms of decision error
probabilities, to supplement
other statistical metrics
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A Receiver Operating Characteristics (ROC)
Approach: The 2x2 Matrix “Overlay”

“Gray Region” — a role for a criteria range and

“combined criteria”, aka “bio-confirmation”
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ROC Provides Information on Trade-Offs
Among Decision Error Types

Error rates as a funetien of candidate TP criterion

Data Set 2 (FL Colored Lakes)
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From MclLaughlin (2012b)
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Binary Classification Method in Currently in USEPA
Draft WQC Guidance

USEPA Draft Selenium Criterion:
Observed vs. Predicted Egg-Ovary Concentrations

(r=0.84, toogy = 26.28, P < 10%),
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Binary Classification Method Currently in USEPA

Draft WQC Guidance

USEPA Draft Selenium Criterion:
Observed vs. Predicted Egg-Ovary Concentrations

(r=0.84, toogy = 26.28, P < 10%),
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A Biotic Ligand Model Example: Toxic Units as

“Decision Context” for Evaluating the Fit of BLM Validation Data
(McLaughlin 2015)
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Figure 24 Predicted versus measured values for fathead minnow copper
LCS50s in water effect ratio studies (Diamond et al., 1997;
Dunbar, 1996). The results from static exposures from Erickson
et al. (1987; fathead minnow lab) are included for comparison.
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A Biotic Ligand Model Example: Toxic Units as

“Decision Context” for Evaluating the Fit of BLM Validation Data
(McLaughlin 2015)
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Use “What If” Metal Concentration Scenarios to
Characterize Scatter in BLM Validation Data as TUs

Unified Zn BLM, ZnOH?* binding constant -2.4 (DeForest and Van
Genderen 2012)

Three simulations (~“55%, ~80%, ~95% within “factor of 2”)

— values generated using loglinear regression equation, adjusting variance
around “perfect fit” line

Each evaluated at hypothetical (“what if”) metal concentration
equal to low (10t %ile), medium (50t %ile), and high (90t %ile) of
the “observed” EC, values

Evaluated using both ROC and linear regression prediction limit
approaches.

Uses laboratory EC, data to represent “true” toxicity, to be
compared with BLM-derived EC, predictions to characterize BLM
performance.




Convert EC, to Toxic Units: “What If” Metal
Concentration Scenarios
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To make the conversion to
TU for each “what if” scenario,
choose a dissolved metal
concentration, M., equal
to a percentile of interest
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(e.g., 107, 507 90™ etc.) Figure 2. ECx validation data from DeForest and Van Genderen (2012)
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the 50th percentile of the measured ECx data (the MID scenario).
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Can Evaluate “Gray Region” Using ROC Error Rates and/or a
Regression Limit Prediction Interval Approach

e (Can use probability plots
of TU data to assess the
size of the “gray region”

Outside gray region, TU
predictions have greater
than the minimum
specified level of
confidence

0.1 1 10
Toxic Units

Stronger relationships lead
1(0) gray regions that cover Figure 3. Cumulative probability plot of measured and predicted toxic units

. for the MID scenario using the unified Zn BLM validation data from DeForest
d SMMa | | er fra ction Of the and Van Genderen (2012). Open symbols: TUp,.q; filled symbols: TUeas-
! A Shaded and labeled regions of the plot show gray region boundaries from
validation data prediction limit analysis (Table 4). A— probability of Type Il error <10% if
TU < 0.58; B = probability of Type Il error <33% if TUeq <0.85; C=region
where the probability of either Type | or Type Il error exceeds 33%;
D = probability of Type | error < 33% if TU > 1.24; E = probability of Type | error
<10% if TU > 1.80.




How Could This Uncertainty Information Be Used To
Describe/Set Goals for Predictive Performance of WQC?

Some ldeas

* For a candidate criterion (e.g., FAV, CMC, CCC):
— confidence limits

e For predictions based on a candidate criterion:
— accuracy (ROC) > X%
— false negative error rate < Y1%;
— false positive error rate < Y2%

— “gray region” covers less than Z% of the
measured/response data




Some Concluding Thoughts

“Splitting” continuous data into categories reduces the amount of
information in the original data, so ROC or other classification
methods should supplement, not replace, traditional statistical
methods

Explicit quantitative uncertainty analysis in water quality criteria
derivation can:

— Improve scientific defensibility and transparency
— Promote the consideration of multiple types of decision errors

— Help drive improvements to criteria-based predictions and
management decisions




Questions?

Contact Information:

Doug McLaughlin, Ph.D.

Principal Research Scientist

National Council for Air & Stream Improvement, Inc.
Northern Regional Center

Kalamazoo, Ml, USA

Phone: 269-276-3545
dmclaughlin@ncasi.org or
douglas.mclaughlin@wmich.edu
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