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Main Message

• The quality and transparency of the science
behind EPA’s aquatic life criteria can be improved
by revising guidelines to include methods for…

1. …developing quantitative estimates of important
statistical uncertainties…

2. …in ways that can be readily understood by a wide
range of stakeholders/decision-makers.

This presentation offers some approaches to consider.



Part I. Introduction



Defining “Decision Context” & the Role of
Uncertainty Analysis in WQC Derivation

• For the purpose of this presentation, think of a “decision context” as part of
the “so what” of scientific data and information.

– What decision is the scientific information supporting?

• A numeric criterion makes several types of “Yes/No” decisions quite obvious
and necessary. Some examples:

– is a water quality criterion protective of designated uses?
– is a water quality criterion being attained?
– are trends in water quality moving toward a WQC?

• In criteria science, there is (almost) always a “Maybe” because there is
(almost) always some degree of scientific uncertainty



Defining “Decision Context” & the Role of
Uncertainty Analysis in WQC Derivation, cont’d

• The over-arching WQ management goal is to correctly
answer “Yes” or “No”
– Try not to say “Yes” when the correct (true) answer is

“No”, and vice versa

– In practice, this means making WQC-based decisions with
confidence, and limiting “false negative” and “false
positive” decision errors to acceptable levels



Other Voices on The Importance of
Uncertainty Characterization in WQC Science

• SETAC Workshop Publication on WQC Science (Reiley et al. 2003):
– Numerous benefits to increased use of explicit, quantitative

characterization of uncertainty in WQC

– ‘‘The overall result will be more realistic risk assessments, the inclusion of
uncertainty into decision-making, and the appreciation of the potential
for over- and under-protection. During implementation, these uncertainty
limits could be incorporated into risk assessments for site-specific criteria
and recognized in the interpretation of monitoring data.” (p. 83)

– “The statistical uncertainty associated with WQC and species sensitivity
curves should be expressed as part of each criterion.” (p. 84)



Other Voices on The Importance of Uncertainty
Characterization in WQC Science, cont’d

• Summary Minutes, September, 2005 EPA Science Advisory Board
Aquatic Life Criteria Guidelines Meeting
– “… important to continue “thinking outside of the box” in order to

review and revise water quality criteria using the existing ‘1985
Guidelines.’” (p. 4);

– “… important for EPA to consider how the Agency would deal with
uncertainties in setting thresholds and making decisions.” (p. 9);

– “… the Agency should consider how the revisions could decrease
uncertainty.” (p. 20)



Other Voices on The Importance of Uncertainty
Characterization in WQC Science, cont’d

• EPA 2010 Guidance “Using Stressor-response Relationships
to Derive Numeric Nutrient Criteria”

“Before finalizing candidate criteria based on stressor-response
relationships, one should systematically evaluate the scientific defensibility
of the estimated relationships and the criteria derived from those
relationships.

More specifically, one should consider whether estimated relationships
accurately represent known relationships between stressors and responses
and whether estimated relationships are precise enough to inform
decisions.” (p. 65)



Part II. Uncertainty Limits Can Be Obtained
Using Existing 1985 Guidelines Equations

and Monte Carlo Analysis
(see McLaughlin & Jain 2011, for example)



1985 Guidelines Approach for Acute Toxicity:
Derive CMC from Toxicity Data

 LC50 = Chemical concentration lethal to 50% of a test
population, 8 or more families required;

 SMAV = Species Mean Acute Value;

 GMAV = Genus Mean Acute Value;

 FAV = Final Acute Value;

 CMC = Criterion Maximum Concentration=FAV/2

LC50s →SMAV → GMAV → FAV → CMC



Deriving Uncertainty Limits From Replicate
Tests of a Single Test Species

from McLaughlin and Jain (2011)

Replicate toxicity tests
allow for an estimate
of the true mean EC50 for
this species, and the
uncertainty of the estimate.

Copper criterion
example



A Monte Carlo Approach:

• Use Monte Carlo computer simulation to generate a new set of SMAVs (1
per species) using the mean and standard error of the acceptable LC50
results for each species

• Derive GMAVs using SMAVs of any tested genus with more than one
species;

• Determine the four most sensitive genera;

• Use these GMAVs, their sensitivity rank, and the total number of genera to
calculate FAV using 1985 Guidelines equation;

• Repeat (5000 trials in McLaughlin & Jain 2011);

• Select desired FAV confidence limits from the resulting distribution of FAVs
(divide each FAV by 2 to get CMC distribution)



Example: BLM-Adjusted Copper Data,
Three FAV Simulations

• 1 - Monte Carlo simulation using the full copper data set;

• 2 - Monte Carlo simulation using a “minimum data set”
(8 taxa), with actual number of toxicity tests available for
each taxa;

• 3 - Monte Carlo simulation using the same 8 taxa, with
the numbers of tests set to 3 for all taxa;
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Part III. Characterizing Uncertainty in
Stressor-Response-Based Numeric Criteria



Characterizing Uncertainty in Stressor-
Response-Based Numeric Criteria

• Stressor-response
relationships and
numeric
thresholds/criteria
form a predictive
model:
– What type of

predictions?
1. response levels (a

value)
2. response condition

(management
implications)

From McLaughlin (2012b)
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A Receiver Operating Characteristics (ROC)
Approach: The 2x2 Matrix “Overlay”

• Classification method
commonly used in medicine
and other fields, less in
environmental science to date

• Useful for both categorical
data and continuous data with
numeric thresholds/criteria

• Calculate performance across
a range of candidate stressor
criteria.

• Can quantify uncertainty in
terms of decision error
probabilities, to supplement
other statistical metrics
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ROC Provides Information on Trade-Offs
Among Decision Error Types

False positive
error rate

From McLaughlin (2012b)

False negative
error rate

Total Phosphorus, mg/L

Error rates as a function of candidate TP criterion



ROC Provides Information on Trade-Offs
Among Decision Error Types

False positive
error rate

From McLaughlin (2012b)

False negative
error rate

Total Phosphorus, mg/L

Error rates as a function of candidate TP criterion



Binary Classification Method in Currently in USEPA
Draft WQC Guidance

USEPA Draft Selenium Criterion:
Observed vs. Predicted Egg-Ovary Concentrations



Binary Classification Method Currently in USEPA
Draft WQC Guidance

USEPA Draft Selenium Criterion:
Observed vs. Predicted Egg-Ovary Concentrations

R2=0.71

1:1 line

EPA draft egg-ovary
criterion =
~15 mg/kg dw

DISAGREE

DISAGREEAGREE

AGREE

See also
Tables 18
& 19 in draft
Se guidance
document



A Biotic Ligand Model Example: Toxic Units as

“Decision Context” for Evaluating the Fit of BLM Validation Data
(McLaughlin 2015)

“…within a factor of 2”



A Biotic Ligand Model Example: Toxic Units as

“Decision Context” for Evaluating the Fit of BLM Validation Data
(McLaughlin 2015)

“…within a factor of 2”

In addition to a “factor of 2” characterization, evaluate using
TUs as a relevant decision context (TU = 1 provides a useful,
familiar threshold value to assess predictive performance in
a WQ attainment context).



Use “What If” Metal Concentration Scenarios to
Characterize Scatter in BLM Validation Data as TUs

• Unified Zn BLM, ZnOH+ binding constant -2.4 (DeForest and Van
Genderen 2012)

• Three simulations (~55%, ~80%, ~95% within “factor of 2”)
– values generated using loglinear regression equation, adjusting variance

around “perfect fit” line

• Each evaluated at hypothetical (“what if”) metal concentration
equal to low (10th %ile), medium (50th %ile), and high (90th %ile) of
the “observed” ECx values

• Evaluated using both ROC and linear regression prediction limit
approaches.

• Uses laboratory ECx data to represent “true” toxicity, to be
compared with BLM-derived ECx predictions to characterize BLM
performance.



Convert ECx to Toxic Units: “What If” Metal
Concentration Scenarios

To make the conversion to
TU for each “what if” scenario,
choose a dissolved metal
concentration, Mdiss, equal

to a percentile of interest
(e.g., 10th, 50th, 90th etc.)
of the observed ECx data

iobs

diss
iobs

ECx

M
TU

,

, 

ipred

diss
ipred

ECx

M
TU

,

, 

(from McLaughlin 2015)
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Can Evaluate “Gray Region” Using ROC Error Rates and/or a
Regression Limit Prediction Interval Approach

• Can use probability plots
of TU data to assess the
size of the “gray region”

• Outside gray region, TU
predictions have greater
than the minimum
specified level of
confidence

• Stronger relationships lead
to gray regions that cover
a smaller fraction of the
validation data



How Could This Uncertainty Information Be Used To
Describe/Set Goals for Predictive Performance of WQC?

Some Ideas

• For a candidate criterion (e.g., FAV, CMC, CCC):

– confidence limits

• For predictions based on a candidate criterion:

– accuracy (ROC) > X%

– false negative error rate < Y1%;

– false positive error rate < Y2%

– “gray region” covers less than Z% of the
measured/response data



Some Concluding Thoughts
• “Splitting” continuous data into categories reduces the amount of

information in the original data, so ROC or other classification
methods should supplement, not replace, traditional statistical
methods

• Explicit quantitative uncertainty analysis in water quality criteria
derivation can:
– Improve scientific defensibility and transparency
– Promote the consideration of multiple types of decision errors
– Help drive improvements to criteria-based predictions and

management decisions



Questions?

Contact Information:

Doug McLaughlin, Ph.D.
Principal Research Scientist
National Council for Air & Stream Improvement, Inc.
Northern Regional Center
Kalamazoo, MI, USA

Phone: 269-276-3545
dmclaughlin@ncasi.org or
douglas.mclaughlin@wmich.edu
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